
None

AN1 Architecture for Technical Reviewers

Document Purpose: One-page reference for enterprise security and architecture teams
evaluating AN1.

System Architecture: Three-Plane Design
AN1 is designed as a secure control plane + trust core for a distributed execution
architecture. It is not a monolithic hosted inference service—it is a control system for client-side
execution with cryptographic provenance and fail-closed enforcement.

┌───┐
│ CONTROL PLANE │
│ (Vercel / Next.js) │
├───┤
│ • API Gateway & Request Routing │
│ • Authentication & Authorization (Supabase RLS) │
│ • Rate Limiting (IP + Partner) │
│ • Billing & Usage Tracking │
│ • Admin Dashboard & Partner Portal │
│ • Audit Logging (request IDs, correlation tracking) │
│ • Kill Switch & Baseline-Only Controls │
└───┘
 ↓ validates via
┌───┐
│ TRUST CORE │
│ (AWS S3 + KMS) │
├───┤
│ • Artifact Storage (S3) │
│ - Trained heads (sst2, boolq, mnli .pt files) │
│ - SHA256 checksums │
│ - KMS signatures (.sig files) │
│ • Cryptographic Signing & Verification (KMS) │
│ - RSA-2048 asymmetric key (RSASSA-PKCS1-v1_5-SHA256) │
│ - Fail-closed signature verification (AN1_KMS_VERIFY=1) │
│ • Artifact Provenance Tracking │
└───┘
 ↓ artifacts consumed by

┌───┐
│ EXECUTION PLANE │
│ (Client Infrastructure) │
├───┤
│ • Client-Side Head Inference (pilot default) │
│ • Customer-Managed Compute │
│ • No customer data retention beyond operational metadata │
│ • Ephemeral z-vectors only (never persisted) │
└───┘

Note: RSA-2048 is used for artifact signing to balance strong security guarantees with fast
verification in latency-sensitive inference paths.

Security Boundaries

What Lives Where

Plane Service Data Security Model

Control Vercel API keys (hashed),
usage metadata,
audit logs

RLS-enforced
Supabase,
service-role only

Trust Core AWS S3 + KMS Trained heads,
signatures,
checksums

KMS-signed artifacts,
fail-closed verification

Execution Client infra z-vectors, inference
results

Customer-managed,
ephemeral only

Data Flow (Read-Only Path)
1.​ Partner authenticates via API key → Control Plane validates (constant-time comparison)
2.​ Control Plane checks kill switch, baseline-only mode, artifact availability
3.​ Control Plane loads artifact from S3 → Trust Core verifies KMS signature
4.​ If signature valid → inference runs on artifact
5.​ If signature invalid → request fails (fail-closed)
6.​ Metadata logged (latency, cost, request ID) → Customer data never retained

Shell

Shell

Trust Core Enforcement

Current Production Posture
Environment Variables (Production):

AN1_STRICT_ARTIFACTS=1 # No fallback to demo weights
AN1_KMS_VERIFY=1 # Cryptographic signature verification required
AN1_KMS_KEY_ID=<key-id> # AWS KMS key for artifact signing
AN1_BASELINE_ONLY=0 # (Can be toggled to 1 to disable all inference)
AN1_KILL_SWITCH=0 # (Can be toggled to 1 for emergency stop)

Verification Commands:

Confirm KMS verification is enabled
curl https://animacore.ai/api/status | jq '.security.kms_verification_enabled'
Expected: true

Confirm strict artifacts mode
curl https://animacore.ai/api/status | jq
'.configuration.strict_artifacts_only'
Expected: true

Verify artifact signature
aws s3 cp s3://an1-artifacts/heads/sst2_head.pt.sig - | base64
aws kms verify --key-id <KEY_ID> --message fileb://sst2_head.pt \
 --signature fileb://sst2_head.pt.sig --signing-algorithm
RSASSA_PKCS1_V1_5_SHA_256
Expected: SignatureValid: true

Operational Controls

Admin Controls (Real-Time)
-​ Kill Switch: Stops all inference immediately (AN1_KILL_SWITCH=1)
-​ Baseline-Only Mode: Disables all non-baseline inference (AN1_BASELINE_ONLY=1)
-​ Artifact Health: Status endpoint shows S3 artifact availability and KMS signature status

-​ Rate Limiting: 60 req/min per IP, configurable per partner
-​ Audit Logs: All requests logged with correlation IDs, partner IDs, artifact versions

Key Management
-​ Root: Ultimate admin (emergency access only)
-​ Human Admin Role: Day-to-day key management (policy updates, rotation)
-​ Service Account (an1-vercel-signer): Runtime operations only (Sign, Verify,

DescribeKey)

Production Readiness Checklist

Pilot-Ready (Current State)
​Control plane deployed on Vercel with RLS-enforced database
​Artifact storage on S3 with SHA256 checksums
​KMS key created with proper role separation
​Fail-closed artifact loading (no fallback weights)
​Rate limiting, audit logging, correlation IDs
​Kill switch and baseline-only controls
​Status endpoint for health monitoring

Enterprise-Ready (Next Phase)
​All artifacts signed with KMS (.sig files in S3)
​AN1_KMS_VERIFY=1 enabled in production
​CloudWatch log mirroring for immutable audit trail
​ Lambda artifact validation on S3 uploads
​Automated key rotation policy
​SOC 2 Type II audit (if required)

What This Architecture Enables
1.​ Cryptographic Provenance: Every inference can be traced to a KMS-signed artifact
2.​ Fail-Closed Enforcement: System refuses to run on unsigned or invalid artifacts
3.​ Zero Customer Data Retention: z-vectors are ephemeral, never persisted (only

operational metadata retained)
4.​ Instant Kill Switch: Global inference stop without code deployment

5.​ Clean Migration Path: Execution plane can move to AWS (Lambda/ECS) without
changing control plane

6.​ Managed Execution (Roadmap): Anima Cloud is an optional future deployment mode
and is not required for pilot evaluation

Common Questions
Q: Is this a "real" SaaS system?​
A: Yes. It is a SaaS control plane for distributed execution. The control plane handles auth,
billing, audit, and artifact distribution. Execution happens client-side (pilot) or can be moved to
managed compute (future).

Q: What happens if KMS signature verification fails?​
A: The request fails immediately with HTTP 500. No inference runs. This is fail-closed by
design.

Q: Can artifacts be tampered with?​
A: No. Every artifact is signed with a KMS key. Tampering invalidates the signature, causing
fail-closed rejection.

Q: What data is retained about customers?​
A: Only metadata: request timestamps, latency, cost, partner ID, artifact version. No z-vectors,
no inference results, no customer representations.

Q: How do you prove this to auditors?​
A:

1.​ curl /api/status shows KMS verification enabled
2.​ Code inspection shows fail-closed logic in lib/an1/headLoader.ts
3.​ Database schema shows no tables for z-vectors or results
4.​ Audit logs show request IDs but no payload data

Contact for Technical Deep-Dive
For architecture walkthroughs, security reviews, or integration planning:​
Email: ops@animacore.ai​
Documentation: https://animacore.ai/pilot​
Status Endpoint: https://animacore.ai/api/status
We welcome technical scrutiny and are prepared to answer detailed questions about our security posture,
operational controls, and architectural decisions.

mailto:ops@animacore.ai
https://animacore.ai/pilot
https://animacore.ai/api/status

	AN1 Architecture for Technical Reviewers
	System Architecture: Three-Plane Design
	Security Boundaries
	What Lives Where
	Data Flow (Read-Only Path)

	Trust Core Enforcement
	Current Production Posture

	Operational Controls
	Admin Controls (Real-Time)
	Key Management

	Production Readiness Checklist
	Pilot-Ready (Current State)
	Enterprise-Ready (Next Phase)

	What This Architecture Enables
	Common Questions
	Contact for Technical Deep-Dive

